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ABSTRACT 

 

We previously developed a deterministic record 
linkage algorithm demonstrating sensitivities 
approaching 90%  while maintaining 100% 
specificity.1  Substantially better performance has been 
reported using probabilistic linkage techniques; 
however, such methods often incorporate human 
review into the process.  To avoid human review, we 
employed an estimator function using the Expectation 
Maximization (EM) algorithm to establish a single 
true-link threshold.  We compared the unsupervised 
probabilistic results against the manually reviewed 
gold-standard for two hospital registries, as well 
against our previous deterministic results.  At an 
estimated specificity of 99.95%, actual specificities 
were 99.43% and 99.42% for registries A and B, 
respectively.  At an estimated sensitivity of 99.95%, 
actual sensitivities were 99.19% and 98.99% for 
registries A and B, respectively.  The EM algorithm 
estimated linkage parameters with acceptable 
accuracy, and was an improvement over the 
deterministic algorithm.  Such a methodology may be 
used where record linkage is required, but human 
intervention is not possible or practical. 

 

INTRODUCTION 
 

Increasingly health care information is distributed 
across many independent databases and systems, both 
within and among organizations as separate islands 
with different patient identifiers.2  This is the case for 
data collected within an institution where there may be 
multiple identifiers, or for data collected about the 
same patient at different health care institutions, 
different pharmacy systems, different payers, and so 
on.  This situation interferes with the aggregation of 
information about individuals across such databases as 
needed for public health reporting, clinical research, 
outcomes management, and drug toxicity reporting.  
Aggregation is important not only to determine a 
patient’s health care status, but also for population 
based studies.  Record linkage is the process of 
combining information about an individual, family, or 
entity residing in one or more databases. 

Several kinds of linkage algorithms exist.3  We 
previously developed an exact-agreement deterministic 
linkage algorithm and reported on its performance, 
which yielded sensitivities approaching 90% while 
maintaining 100% specificity.1  On the surface these 
results compare poorly with the success of probabilistic 
linkage methods, which can approach greater than 95% 
for both sensitivity and specificity.4  However these 

comparisons can be misleading because they reflect the 
success of the algorithm assisted by a human, not the 
algorithm alone.  Probabilistic linkage software will 
declare a link for record-pairs with high match likelihood 
scores and will declare a non-link if the score is very low, 
but requires a human operator to evaluate the record-pair 
when the computed likelihood is within an indeterminate 
middle range.5-7 (Figure 1) 

 

Figure 1: Typical two-threshold scheme for probabilistic 
scores using human review.  Record pairs between the upper 
and lower thresholds are manually reviewed for true- or false-link 
status. 

We hypothesize that the Felligi-Sunter (FS) 
probabilistic linkage method will perform better than our 
exact-agreement deterministic method because the FS 
method produces match likelihood scores that are tailored 
to the unique characteristics of the specific records being 
linked.  That being the case, we wanted to evaluate a 
probabilistic method without human intervention, so that 
we can make the right methodology choice when we 
cannot afford the high cost of a human operator, or 
because privacy concerns dominate.  While the 
computational methods described in this research are well-
known, there are no known reports describing the 
unsupervised performance of such methods using hospital 
registry data. 

Probabilistic linkage algorithms generate a match 
likelihood score for each comparison.  We can remove the 
human operator by picking a single threshold above which 
we declare a link and below which a non-link. (Figure 2) 
In this report we describe the performance of a 
probabilistic linkage algorithm implemented without 
human intervention, assess its performance, and compare it 
to our deterministic method. 

 



METHODS 
 

We compared the performance of an unsupervised 
probabilistic technique to our earlier deterministic 
method using the same manually reviewed gold-
standard data.1  We previously analyzed two separate 
6,000 record pair files from two hospital registries 
linked to the Social Security Death Master File by 
Social Security Number.  Each record pair was labeled 
as a link or non-link. 

 

Figure 2: Single probabilistic score threshold without 
human review.  No scores are tagged for human review. 

For the current study we generated match 
likelihood scores for each record-pair using the Felligi-
Sunter model of record linkage, which sums the 
component weights of each identifier in the jth record 
pair:8 
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where, for the kth identifier in the jth record pair: 
 

n = number of identifiers per record 
j

kγ  = observed agreement/disagreement value (1=agree,0=disagree) 

mk = estimated identifier agreement rate among true links 
uk = estimated identifier agreement rate among false links 

Because we don’t know which pairs are true links 
or false links, we have to estimate mk and uk from the 
data. Since commonly used identifiers demonstrate 
similar agreement rates across independent data sets,9, 

10 a bootstrap method proposes using these standard 
agreement/disagreement rates for each identifier as 
initial estimates and iteratively recalculating the match 
weights.5, 9  However, such iterative recalculation 
requires manually reviewing indeterminate record 
pairs. 

Recently investigators began using the expectation 
maximization (EM) algorithm to estimate the mk and uk 
parameters.11-13  The EM algorithm is a widely used 
probabilistic algorithm for obtaining maximum 
likelihood estimates of unknown parameters.14  Given 
an incomplete set of data D (in this dataset, the true 
link or false link status, and proportion of true links are 

missing) and a model for the incomplete data characterized 
by a parameter set θ (in this case mk and uk ), the 
fundamental goal of EM is to determine θ such that the 
probability P(D|θ) is maximized.  To do so, an initial set of 
parameters (θ ) are used to calculate an expected likelihood 
in the expectation step, providing estimates of missing 
data.  In the maximization step, the derivative of the data 
log-likelihood is set to zero to update the estimates of the 
unknown parameters.  We repeat the E and M steps until 
the parameter estimates converge. 

The data log-likelihood for probabilistic record 
linkage is:12 
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where: 
d = observed, incomplete data 
θ = parameter set (m1, m2, …, mn, u1, u2, …, un, p) 
N = observed total number of record pairs 
gj = (1,0) for matched pairs and (0,1) for unmatched pairs 
γ j = observed identifier agreement/disagreement vector for the jth 

record pair 
p = proportion of truly matched record pairs 

 
For the expectation step, the unknown values for gj are 

estimated using (gm(γ j), gu(γ j)) where:12  
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gu(γ j) is derived similarly. 
For the maximization step, the partial derivatives for 

each of three maximization problems are set to zero, 
yielding equations for the unknown parameters:12
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We refined the parameters with multiple iterations of 
the expectation and maximization steps, (equations 3–6) to 
establish estimates for the proportion of true links (p) and 
identifier agreement rates (mk and uk).  Initial values for mk, 
uk, and p were 0.9, 0.1 and 0.5, respectively; values for all 
parameters in both registries converged to 5 decimal places 
after approximately 15 iterations. 



Match likelihood scores for each set of 6,000 were 
then calculated using (1). Assuming conditional 
independence between identifiers, the estimated true-
positive and true-negative rates for each comparison 
vector (γ j) were calculated using: 
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For a data set with n identifiers per record, there 
are 2(n) unique agree/disagree comparison vectors (γ j).  
As before,1 we used last name, NYSIIS15 transformed 
first name (FNY), middle initial, gender, month, day, 
and year of birth to establish linkage status; therefore, 
there were 2(7) or 128 unique comparison vectors.  SSN 
was not used for this analysis because we used it to 
block the record pairs; therefore, it agreed for all 
record-pairs.  (Blocking refers to the process of 
grouping similar record pairs together.  It is analogous 
to sorting socks by color before pairing them.) 

We calculated the estimated true-positive and true-
negative rates for each unique vector using equations 
(8) and (9).  We ordered the vectors by ascending 
scores and calculated the estimated sensitivity and 
specificity as a function of record-pair score.  We then 
compared the estimated sensitivity and specificity at 
various match likelihood score thresholds with both the 
manually reviewed results and the deterministic 
method. 

RESULTS 
 

Sensitivities/Specificities: The EM-estimated and 
observed sensitivities and specificities for registries A 
and B are shown in Figure 3 and Figure 4, respectively.  
Table 1 shows the estimated and observed values for an 
estimated specificity of 99.95% and an estimated 
sensitivity of 99.95%. The results from the earlier 
deterministic algorithm are included for comparison as 
well. At these thresholds, the EM estimates closely 
reflect the observed values. 

Figure 3: Registry A sensitivities and specificities as a 
function of match likelihood score.  The EM-estimates are 
compared with manually reviewed (observed) values. 

Figure 4: Registry B sensitivities and specificities as a 
function of match likelihood score.  The EM-estimates are 
compared with manually reviewed (observed) values. 

 

  Registry A Registry B 
 SPECobs 99.43 99.42 
SPECest = 99.95 SENSest 97.39 98.02 
 SENSobs 94.64 96.50 
 SENSobs 99.19 98.99 
SENSest = 99.95 SPECest 97.04 98.79 
 SPECobs 98.29 97.97 

SENS 87.5 90.9 Deterministic SPEC 100 100 

Table 1: Estimated and observed sensitivities and 
specificities for two threshold estimates and the 
deterministic algorithm. (SPECest/obs = estimated and observed 
specificity and SENSest/obs = estimated/observed sensitivity) 

The area under the curve (AUC) values for the 
receiver-operator characteristics (ROC) curves are shown 
in Table 2.  The estimated values very closely approximate 
the manually reviewed results. 

 

 Registry A Registry B 
Manual Review .9998 .9999 

EM-Estimate .9980 .9989 

Table 2: Area under the curve (AUC) values for both 
estimated and observed results. 

True links and identifier agreement: Manual review 
found 5,298 true links out of 6,000 record pairs for registry 
A and 5,655 true links from 6,000 for registry B.  The EM 
algorithm estimated 5,254 and 5,597 true links for 
registries A and B, respectively.  Table 3 shows the 
estimated and observed agreement rates for individual 
identifiers, from which all estimated data were derived. 

Vectors: Table 4 shows two sample agreement vectors 
(γ j) from registry A and their corresponding parameters. 
The estimated values are derived using the agreement rates 
from Table 3. The first vector represents record-pair 
agreement on all except one identifier; the second vector 
agrees on only one identifier. The match likelihood score 
for the first vector is 18.8, indicating a highly probable link 
relative to other pairs in the data set. The second vector has 
a low score and thus will likely not be considered a true 
link. 

 



Registry A Registry B Identifier mest mobs uest uobs mest mobs uest uobs 
LN  .937 .935 .246 .216 .977 .976 .466 .388 

FNY .890 .886 .047 .014 .925 .924 .131 .008 
MI .225 .223 .009 .010 .283 .283 .046 .008 
G .802 .799 .390 .391 .825 .825 .320 .240 

MB .970 .964 .090 .084 .989 .980 .092 .098 
DB .917 .910 .053 .047 .955 .945 .049 .052 
YB .920 .912 .042 .041 .966 .957 .065 .057 

Table 3: EM-estimated identifier agreement rates 
compared with observed agreement rates.  EM 
accurately estimates parameters for most cases.  The lower 
uest accuracy in registry B is related to the relatively small 
number of non-links in that data. 

 
 Agreement Vectors (γ j): 
 {1 1 0 1 1 1 1} {0 1 0 0 0 0 0} 
True-link rate, 
estimated 0.424 3.1x10-6 

SENSest 15.36% 100% 
SENSobs 17.26% 99.92% 
True non-link 
rate, estimated 9.3x10-7 0.117 

SPECest 100% 70.64% 
SPECobs 100% 82.45% 
Link Score 18.8 (-15.2) 

Table 4: Two agreement vector examples and their 
corresponding linkage parameters.  The individual 
components in the vector represent agreement-disagreement 
between last name, NYSIIS transformed first name, middle 
initial, gender, month, day, and year of birth, respectively. 

 
DISCUSSION 

 

The probabilistic method represents an 
improvement over the deterministic method for a 
number of reasons.  First, sensitivities were 
substantially improved by 6% to 7% with minimal 
decrease in the specificity (Table 1).  Second, although 
the deterministic method achieved a numerical value 
for specificity of 100%, this was from a sample size of 
6,000. In a much larger sample we may detect false 
positives. Third, deterministic sensitivities may 
decrease in data with different identifier characteristics 
such as different ethnic names or greater typographical 
error rates.  Fourth, the probabilistic method 
automatically adapts to the specific data set while the 
deterministic model does not.  Fifth, while false 
positives and false negatives are not completely 
eliminated, one can select an estimated level of linkage 
sensitivity or specificity with reasonable accuracy. 

The estimated sensitivity and specificity differ 
most from observed values at the extremes of scores 
(Figure 3 and Figure 4).  This is due in part to the 
assumption of conditional independence (CI) in both 
the EM algorithm and probabilistic scoring method.  
That is, the models assume that identifiers such as first 
name and gender are independent, when in fact there is 

dependence.  For example, there are few males where the 
first name is Mary. 

Further, agreement/disagreement values (m and u) 
were estimated using exact-match rules, while manual 
review used all informational cues available to the 
reviewer.  For example, a true-link record pair failing to 
exactly match on several identifiers may fall below the 
estimated true link threshold, while a manual review may 
reveal name misspellings and numerical nearness in birth 
dates that provide sufficient evidence to conclude the two 
records are indeed a true link. 

String comparator functions16, 17 can be used to 
improve the accuracy of comparison vectors and thus 
improve linkage estimate accuracy.  String comparators 
allow for minor spelling variations and typographical 
errors in data.  Linkage accuracy may also improve if we 
include other information such as zip code, race, or other 
accurately recorded, stable identifiers. 

This study is limited by the fact that we blocked 
record-pairs on SSN alone.  Records that agree at the 
outset on SSN will have a high proportion of true-links.  
Record pairs formed with additional blocking schemes 
may produce different results. 

Additionally, it is notable that the Felligi-Sunter 
probabilistic record linkage method can be used as a 
systematic method to predict the performance of individual 
identifier agreement/disagreement vectors.  Because these 
vectors represent exact match, or deterministic decisions, 
this method theoretically can be used to automatically 
discover the most accurate linkage combinations for a 
deterministic linkage algorithm without any human review. 

Future work will analyze the effect of including 
additional identifier blocking combinations.  Additionally, 
many of the steps involved in probabilistic linkage can be 
performed in parallel fashion, greatly reducing processing 
time for large data sets.18  We will explore developing a 
parallel version of the software.  We will also expand 
functionality to include string comparators with 
corresponding probability density functions. 

 
CONCLUSION 

 

In our hospital registry data, the EM algorithm 
accurately estimated linkage parameters without human 
intervention.  Such a methodology may be used where 
record linkage is required, but human intervention is not 
possible or practical.  The software tools used to perform 
linkage may be obtained by contacting the author (SJG). 
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